
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
February 26, 2006

3. REPORT TYPE AND DATES COVERED
Final Report July 1, 2003 – Nov 30, 2005

4. TITLE AND SUBTITLE
Trust in Security-Policy Enforcement Mechanisms
Final Report

5. FUNDING NUMBERS
F49620-03-1-0156

6. AUTHOR(S)
Schneider, Fred B.
Morrisett, Greg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

Computer Science Department
Cornell University
Ithaca, NY 14853

 42769

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFOSR
Suite 325, Room 3112
875 Randolph Street
Arlington, VA 22203-1768

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This project investigated language-based approaches for enforcing security policies and proactive approaches for implementing
trustworthy distributed services.

One avenue of language-based work produced Cyclone, a type-safe variant of C. The Cyclone language retains the familiar syntax and
semantics of C code, but provides the strong security guarantees of modern languages such as Java.

A second avenue of language-based work explored a general class of policy enforcement mechanism based on in-line reference
monitors (IRM), which insert checks and actions in an application to ensure the resulting code will respect the policy when executed.
The class of policies enforceable through IRMs was shown not to correspond to any class of the Kleene hierarchy. In addition, a
certified IRM rewriter framework was developed for Microsoft .NET code. It produces explicit evidence so an independent proof
checker can determine that rewritten code respects a desired security policy.

Finally, proactive obfuscation was investigated as a basis for achieving independence of server replicas comprising a service. This
resulted in new agreement protocols to handle servers that periodically have their storage purged and reloaded (to eliminate
undetectably compromised code and data). It also produced a semantic characterization of how obfuscation compares with strong
typing, finding that the two are comparable, a surprising result.
14. SUBJECT TERMS
Security, trustworthy systems, language-based security, inlined

15. NUMBER OF PAGES
11

reference monitor, certifying compilation 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Trust in Security-Policy Enforcement

Mechanisms

AFOSR Grant F49620-03-1-0156

Final Report

1 July 2003 – 30 November 2005

Fred B. Schneider Greg Morrisett
Computer Science Department Computer Science Department

Cornell University Harvard University
Ithaca, New York Cambridge, Massachusetts

(607) 255-9221 (phone) (617) 495-9526 (phone)
fbs@cs.cornell.edu greg@eecs.harvard.edu

Objectives

A key part of building trustworthy software systems is having some basis to
believe that the system will behave as expected in the presence of attacks
and/or failures, as well as design and programming errors. And any basis for
having trust in a computing system will ultimately be grounded in human
comprehension, for only if we can understand and predict how an artifact
behaves can we trust it. Humans are limited in what they can understand,
though. So research to facilitate creating trustworthy systems that are large
and complex must somehow provide a means to amplify trust in artifacts
that humans can understand. We need the means to leverage components
we do trust and the means to transfer trust from one part of a system to
another.

The objective of this project was to investigate two particularly promis-
ing avenues for trust amplification,. Both avenues built on unexplained but
nevertheless empirically observed asymmetries—one between proof genera-
tion and proof checking, the other between public key encryption and public

1

key decryption:

• Taking language-based security the next step, by further developing
the Cyclone type-safe variant of C and by marrying certifying compila-
tion with program analyzers and IRM rewriters as a means of making
language-based enforcement technologies more trustworthy.

• Combining proactive secret-sharing and threshold cryptography in con-
nection with quorums for replication-management as a means of imple-
menting trustworthy services in settings satisfying only weak assump-
tions.

Accomplishments

Cyclone. Implementation errors, such as buffer overruns, memory leaks,
and integer overflows account for an alarming number of successful attacks.
To address these concerns, the project developed a type-safe variant of C
called Cyclone. The Cyclone language retains the familiar syntax and se-
mantics of C code, so that legacy programs can be easily ported to an envi-
ronment with the same strong security guarantees of modern languages such
as Java.

The original version of Cyclone used a combination of static type-checking
and run-time tests to detect and prevent implementation errors. To minimize
run-time overhead—and to decrease the probability of run-time failure—
this project extended the compiler with support for extended static checking
(ESC).

The ESC component of the Cyclone compiler was first used to eliminate
run-time checks that could not be eliminated through the static type system,
including checks on array subscripts, pointer arithmetic, etc. This was ac-
complished by first constructing a verification condition—a logical assertion
whose validity ensures that the run-time check will never fail. The verification
conditions for each check were then fed to a custom theorem prover. When
the theorem prover could successfully prove the verification condition, the
corresponding check was eliminated. When the prover could not discharge
the verification condition, a warning was issued to the programmer.

The primary challenges in this effort were (i) making the verification con-
dition generation scalable and precise and (ii) finding fast but sound heuris-
tics for the theorem prover. For instance, previously proposed algorithms

2

could generate verification conditions exponentially larger than the original
source code. The project developed a new algorithm that ensures the condi-
tions are quadratic in the size of the source in the worst case and linear in
practice.

Once these hurdles were overcome, the compiler was able to automatically
eliminate 96% of the run-time checks in the roughly 80,000 lines of Cyclone
code that make up the standard libraries and compiler. Furthermore, the
additional analyses and transformations only added 2% overhead to compile
times.

Inlined Reference Monitors. In earlier work, PI Schneider developed a
model of enforceable security policies and showed that, in principle, all such
policies could be realized using some form of a reference monitor. A reference
monitor observes system execution and blocks actions that would violate a
desired security policy. Today, most reference monitors are implemented
by an operating system using hardware-enforced primitives. However, the
class of policies that can be directly enforced using hardware mechanisms
is severely limited because the machine has no knowledge of application-
level semantics, only limited opportunity to intervene, and few provisions for
extending policies to cover new situations.

To overcome these limitations, a more general class of enforcement mech-
anisms based on inlined reference monitors (IRMs) was studied under the
auspices of this funding. An IRM tool takes a policy and rewrites untrusted
code, inserting checks and actions that ensure the resulting code will re-
spect the policy when executed. Inlining the monitor’s code allows it to have
complete access to the internals of the application, and allows it to tailor
the policy to the application and its abstractions. Furthermore, the IRM ap-
proach makes it possible to insert corrective actions instead of simply halting
the application.

Building on Schneider’s earlier work, the project developed a more re-
fined characterization of what policies can be enforced using inlined reference
monitors. Specifically, the PIs developed a model based on standard Turing
machines, adapted Schneider’s criteria for enforceable security policies, and
introduced computability requirements. Static analysis and classical refer-
ence monitors were also integrated into the model. This allowed comparing
the relative power of the various enforcement mechanisms and relating the
power of these mechanisms to standard computability results. For instance,

3

it was relatively easy to show that the class of policies precisely supported
by static analysis could also be supported by both classical and inlined ref-
erence monitors. In addition, introducing a computability requirement on
reference monitors was found to be necessary, but not sufficient, for precise
characterization of the class of policies they can actually realize. And a new
property, called “benevolence” was identified; it provides a more accurate
upper bound on the power of reference monitors.

The most surprising and important results obtained concern the general
framework of IRMs. The class of policies originally characterized by Schnei-
der was shown not to include all policies enforceable through IRMs (and vice
versa). Indeed, the class of policies enforceable through IRMs was shown
not to correspond to any class of the Kleene hierarchy. This is a surprising
and an important result, because it shows that inlined reference monitors are
truly a powerful security enforcement technique.

In addition to a theoretical study of IRMs, a number of practical issues
were studied too. For instance, to achieve acceptable performance, an IRM
rewriter needs to perform a number of sophisticated optimizations so that
checks and IRM state updates are inserted only where needed. Furthermore,
an IRM rewriter must be careful to ensure that the integrity of the reference
monitor cannot be violated by untrusted code. In practice, this means IRM
rewriters are relatively large tools (similar to compilers) that undoubtably
contain bugs, and thus should not be trusted.

To address this concern, the project combined the ideas behind proof-
carrying code (PCC) with IRM rewriting and developed a certified IRM
rewriter framework for Microsoft .NET code. In this framework, the rewriter
produces explicit evidence that enables an independent proof checker to de-
termine that the rewritten code respects the desired security policy. The
proof checker is relatively small compared to rewriters and is therefore likely
to be more trustworthy.

The evidence that the rewriter provides to the checker is in the form of
extended typing annotations. A model of the .NET intermediate language
was constructed along with a proof that, given proper evidence that the pro-
gram type-checks (under the extended type system), any execution sequence
of the code will respect the policy.

Implementing Trustworthy Services. To be trustworthy, a service must
tolerate failures and attacks. The means to build fault-tolerant services has

4

been at hand for some time—replication of servers on independent hosts.
Scaling that up to handle attacks was a third research focus of this grant.
In particular, although server failures are often observed to be independent,
independence in the presence of attacks is typically not seen. An adversary
that disrupts one replica will probably be able to exploit the same vulner-
ability at other replicas and disrupt them as well—having 2f + 1 replicas
might tolerate up to f faulty hosts, whereas all hosts (hence all replicas)
would succumb to a single attack.

Server diversity thus is central to implementing trustworthy services with
replicated servers. Such diversity can be introduceed automatically during
compilation, loading, or in the run-time environment by using an obfuscator,
which transforms a base program into a morph according to some semantics-
preserving transformations. Different subsets of these transformations yield
different morphs, with many of the transformations themselves being non-
deterministic. An obfuscation key input to the obfuscator determines the
exact transformations used for computing a specific morph, and two different
obfuscation keys are likely to produce unpredicatably different morphs of the
same base program.

Use of an obfuscation key not known by attackers defends against attacks
that work by exploiting detailed knowledge of base server code. But over
time, details of a morph’s code could become known to attackers, so simply
running different morphs on each server is not sufficient. This is just the well
known failing of the oft-maligned “security by obscurity”. There is, however,
a promising defense available—proactive execution of obfuscation, whereby
each server periodically selects a fresh (secret) obfuscation key, computes a
new morph, and executes that morph for its next window of vulnerability.

Two classes of questions had to be addressed in getting proactive obfusca-
tion to work; that drove the research. First, were questions about protocols
to ensure that morphs would be terminated and restarted in a way that re-
sisted compromise by attackers. The needs here were not being addressed
by extant agreement protocols, because morphs have their storage purged
and reloaded (to eliminate undetectably compromised code and data) at the
start of each window of vulnerability. Not only were such amnesia-insensitive
agreement protocols developed as part of this project, but a firewall that em-
ploys proactive obfuscation was designed and prototyped. Having the pro-
totype allowed different protocols to be explored and ensured that protocol
design was grounded in the realities of an actual system context.

The second class of problems concerned foundations of the approach:

5

What classes of attacks would be blunted by proactive obfuscation? Specific
correspondences between classes of transformations and classes of attacks
they defend against was known at the start of this project. But although
knowing this correspondence is important when designing a set of defenses
for a given threat model, knowing the specific correspondences is not the
same as knowing the overall power of mechanically-generated diversity as a
defense. This project explored that latter, broader, issue, by

• giving a semantics for proving results about the defensive power of
obfuscation;

• giving a precise characterization of attacks, applicable to viewing di-
versity as a defense;

• developing the thesis that mechanically-generated diversity is compa-
rable to type systems, and deriving an admittedly unusual type system
equivalent to obfuscation in the presence of finitely many keys;

• exhibiting, for a C-like language and non-trivial obfuscator, an increas-
ingly tighter sequence of type systems for soundly approximating ob-
fuscation under arbitrary finite sets of keys. Surprisingly, the more
accurate type systems are based on information flow. No type system
corresponds exactly to the obfuscator under arbitrary finite sets of keys,
and therefore approximations are the best that can be achieved.

Personnel Supported

Faculty: Fred B. Schneider and Greg Morrisett.

Postdoctoral Researchers: Robbert Van Renesse.

Graduate Students: James Cheney, Sigmund Cherem, Matthew Fluet,
Kevin Hamlen, Ruijie Wang, and Yanling Wang.

Undergraduate Students: Gregory Roth.

6

Publications:

1. Daniel J. Grossman. Type-Safe Multithreading in Cyclone. ACM
Workshop on Types in Language Design and Implementation (New Or-
leans, LA, January 2003).

2. Yaron Minsky and Fred B. Schneider. Tolerating malicious gossip.
Distributed Computing 16, 1 (Feb 2003), 49–68.

3. James Cheney and Christian Urban. System description: Alpha-Prolog,
a fresh approach to logic programming modulo alpha-equivalence. Work-
shop on Unification (Valencia, Spain, May, 2003).

4. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and
Trevor Jim. Compiling for template-based run-time code generation.
Journal of Functional Programming, 13(3):677-708, May 2003.

5. Daniel J. Grossman. Safe Programming at the C Level of Abstraction.
Ph.D. Thesis, Cornell University, August 2003.

6. Fred B. Schneider. Least Privilege and More. IEEE Security and Pri-
vacy, Volume 1, Number 3 (September/October 2003), 55–59. Also
appears in Computer Systems: Theory, Technology, and Applications,
(A. Herbert and K. Jones, eds). Springer-Verlag, New York, 253–258.

7. Dag Johansen, Robbert van Renesse, and Fred B. Schneider. WAIF:
Web of Asynchronous Information Filters. Future Directions in Dis-
tributed Computing, Lecture Notes in Computer Science, Volume 2585
(Schiper, Shvartsman, Weatherspoon, and Zhao, eds.) Springer-Verlag,
2003, 81–86.

8. Fred B. Schneider. Least privilege and more. Computer Systems: Pa-
pers for Roger Needham, Andrew Herbert and Karen Sparck Jones, eds.
Microsoft Research, 2003, 209–213.

9. Matthew Fluet and Daniel Wang. Implementation and Performance
Evaluation of a Safe Runtime System in Cyclone. Proceedings of the
SPACE 2004 Workshop, (Venice, Italy, January 2004).

10. Fred B. Schneider. The Next Digital Divide. Editorial. IEEE Security
and Privacy 2, 1 (January/February 2004), 5.

7

11. William Josephson, Emin Gun Sirer, and Fred B. Schneider. Peer-to-
peer authentication with a distributed single sign-on service. Proceed-
ings Third International Workshop on Peer-to-Peer Systems (IPTPS’04,
San Diego, CA, February 2004), ACM.

12. James Cheney. The Complexity of Equivariant Unification. Proceed-
ings of the 31st International Colloquium on Automata, Languages and
Programming (ICALP 2004), (Turku, Finland, July 2004).

13. M. J. Gabbay and J. Cheney. A Proof Theory for Nominal Logic.
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), (Turku, Finland, July 2004), 139–148.

14. James Cheney. Nominal Logic Programming. Ph.D. Thesis, Cornell
University (August 2004).

15. Matthew Fluet and Greg Morrisett. Monadic regions. In Proceed-
ings of the ACM International Conference on Functional Programming
(ICFP’04), (Park City, Utah, September 2004), 103–114.

16. Fred B. Schneider. Time out for station identification. Editorial. IEEE
Security and Privacy 2, 1 (September/October 2004), 5.

17. Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Expe-
rience with safe manual memory-management in Cyclone. In Proceed-
ings of the ACM International Symposium on Memory Management,
(ISMM’04), (Vancouver, British Columbia, October 2004), 73–84.

18. Robbert van Renesse and Fred B. Schneider. Chain replication for sup-
porting high throughput and availability. Sixth Symposium on Operat-
ing Systems Design and Implementation (OSDI ’04), (San Francisco,
California, December 2004), USENIX Association, 2004, 91–104.

19. Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cy-
clone: A type-safe dialect of C. In C/C++ User’s Journal, 23(1):6–13,
January 2005.

20. Greg Morrisett, Matthew Fluet, and Amal Ahmed. L3: A linear
language with locations. Seventh International Conference on Typed
Lambda Calculi and Applications (TLCA’05), (Nara, Japan, April 2005),
293–307.

8

21. Scott D. Stoller and Fred B. Schneider. Automated analysis of fault-
tolerance in distributed systems. Formal Methods in System Design
28, 2 (March 2005), 183–196.

22. Fred B. Schneider. It depends on what you pay. Editorial. IEEE
Security and Privacy 3, 3 (May/June 2005), 5.

23. Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Be-
lief in Information Flow. Proceedings 18th IEEE Computer Security
Foundations Workshop (Aix-en-Provence, France, June 20-22, 2005),
31–45.

24. Lidong Zhou and Fred B. Schneider. APSS: Proactive secret sharing in
asynchronous systems. ACM Transactions on Information and System
Security 8, 3 (August 2005), 1–28.

25. Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed
model of substructural state. In Proceedings of the ACM International
Conference on Functional Programming (ICFP’05), (Tallinn, Estonia,
September 2005), 78–91.

26. Lidong Zhou and Fred B. Schneider. Implementing trustworthy services
using replicated state machines. IEEE Security and Privacy, Volume
3, Number 5 (September/October 2005), 34–43.

27. Matthew Fluet and Greg Morrisett. Monadic regions. Journal of Func-
tional Programming, to appear.

Interactions/Transitions

• Schneider is the director of the AFRL/Cornell Information Assurance
Institute.

• For 2003, Schneider served as Chief Scientist of the Griffiss Institute,
New York State Cybersecurity consortium, and served on the Board of
Directors for the following 2 years.

• Schneider served as a member of the following industrial advisory boards:
CIGITAL Technical Advisory Board; Fast Search and Transfer Techni-
cal Advisory Board; IBM Corporation Autonomic Computing Advisory

9

Board; Intel Microprocessor Research Lab Advisory Board; Microsoft’s
Trustworthy Computing Academic Advisory Board; Packet General
Networks Technical Advisory Board.

• Schneider served on the following other advisory committees: UK De-
pendability Interdisciplinary Research Collaboration (DIRC), Steer-
ing Committee; ACM Advisory Committee on Security and Privacy
(ACSP); National Research Council Computer Science and Telecom-
munications Board; CSTB study Committee on Improving Cybersecu-
rity in the U.S; NSF/CISE Advisory Committee.

• Schneider served on the editorial boards for: Distributed Computing,
Information Processing Letters, High Integrity Systems, Annals of Soft-
ware Engineering, ACM Computing Surveys. He is also co-managing
Editor for Springer-Verlag’s Texts and Monographs in Computer Sci-
ence and Associate Editor-in-Chief for IEEE Security and Privacy mag-
azine.

• Schneider is Chief Scientist of the NSF TRUST Science and Technol-
ogy Center, which includes U.C. Berkeley, Carnegie-Mellon University,
Cornell University, Stanford University, and Vanderbilt University.

• Morrisett serves on Microsoft’s Trustworthy Computing Academic Ad-
visory Board and the Fortify Technical Advisory Board.

• Morrisett serves on the editorial boards for: Journal of Functional Pro-
gramming and ACM Transactions on Programming Languages and Sys-
tems. He also serves on the Advisory Committee for the Semantics, Ap-
plications, and Implementations of Program Generation (SAIG) con-
ference; and the ACM Conference on Types in Language Design and
Implementation.

• Morrisett served as the program chair for the 2003 ACM Symposium
on Principles of Programming.

DoD Interactions and Technology Transitions

• As a consultant to DARPA/IPTO, Schneider chaired the indepen-
dent evaluation team for the OASIS Dem/Val prototype project. This
project funded the design of a JBI system intended to tolerate a class

10

A Red Team attack for 12 hours. Schneider also served on the indepen-
dent evaluation team for the DARPA/IPTO Self-Regenerative Systems
program.

• Schneider served twice on AFRL search committees for Senior Scientists
in Information Assurance Technology.

• Morrisett and Schneider each briefed the Infosec Research Council’s
“Research Hard Problems” study; Schneider also served as a reviewer
for the final resport.

• Morrisett worked on the development of Microsoft’s tools for automat-
ically finding security flaws in production code, based on his experi-
ence with Cyclone. He and Schneider also worked with student Kevin
Hamlen and Microsoft researchers on the implementation of the .NET
rewriting tool for inline reference monitors.

• AT&T research worked with Morrisett to develop the Cyclone language,
compiler, and tools. In addition, researchers at the University of Mary-
land, the University of Utah, Princeton, the University of Washington,
the University of Pennsylvania, and Cornell are all using Cyclone to
develop research prototypes.

Honors and Awards: 7/2003 – 11/2005

F.B. Schneider:

• Doctor of Science (honoris causa), University of NewCastle-upon-Tyne
(2003).

11

